మా గ్రూప్ ప్రతి సంవత్సరం USA, యూరప్ & ఆసియా అంతటా 3000+ గ్లోబల్ కాన్ఫరెన్స్ ఈవెంట్లను నిర్వహిస్తుంది మరియు 1000 కంటే ఎక్కువ సైంటిఫిక్ సొసైటీల మద్దతుతో 700+ ఓపెన్ యాక్సెస్ జర్నల్లను ప్రచురిస్తుంది , ఇందులో 50000 మంది ప్రముఖ వ్యక్తులు, ప్రఖ్యాత శాస్త్రవేత్తలు ఎడిటోరియల్ బోర్డ్ సభ్యులుగా ఉన్నారు.
ఎక్కువ మంది పాఠకులు మరియు అనులేఖనాలను పొందే ఓపెన్ యాక్సెస్ జర్నల్స్
700 జర్నల్స్ మరియు 15,000,000 రీడర్లు ప్రతి జర్నల్ 25,000+ రీడర్లను పొందుతున్నారు
Zahid Khan
Treatment of a tooth that is seriously calcified, malposed, or fixed could make it challenging to decide the numberwhat’s more, position of openings on the floors of mash chambers. A novel method for locating root-canal orifices and pulp chambers is presented after analyzing pulp chambers from 3000 pulled teeth.
An essential but challenging step in dental surgical planning is the precise and automated segmentation of individual teeth and root canals from cone-beam computed tomography (CBCT) images. For efficient, precise, and fully automatic root canal segmentation from CBCT images, we propose a novel framework made up of two neural networks—DentalNet and PulpNet—in this paper. To begin, we use the proposed DentalNet to segment and identify tooth instances. After that, the affected tooth’s region of interest (ROI) is taken out and fed into the PulpNet for precise segmentation of the pulp chamber and root canal space. These two networks outperform a number of comparing methods when tested on two clinical datasets and trained with multi-task feature learning. In addition, in order to enhance the surgical planning procedure, we incorporate our method into an effective clinical workflow. In two clinical case studies, our workflow effectively obtained the 3D model of the tooth and root canal for surgical planning in 2 minutes instead of 6 hours, resulting in satisfying outcomes in challenging root canal treatments.