ISSN: 2277-1891

ఇంటర్నేషనల్ జర్నల్ ఆఫ్ అడ్వాన్స్ ఇన్నోవేషన్స్, థాట్స్ & ఐడియాస్

అందరికి ప్రవేశం

మా గ్రూప్ ప్రతి సంవత్సరం USA, యూరప్ & ఆసియా అంతటా 3000+ గ్లోబల్ కాన్ఫరెన్స్ ఈవెంట్‌లను నిర్వహిస్తుంది మరియు 1000 కంటే ఎక్కువ సైంటిఫిక్ సొసైటీల మద్దతుతో 700+ ఓపెన్ యాక్సెస్ జర్నల్‌లను ప్రచురిస్తుంది , ఇందులో 50000 మంది ప్రముఖ వ్యక్తులు, ప్రఖ్యాత శాస్త్రవేత్తలు ఎడిటోరియల్ బోర్డ్ సభ్యులుగా ఉన్నారు.

ఎక్కువ మంది పాఠకులు మరియు అనులేఖనాలను పొందే ఓపెన్ యాక్సెస్ జర్నల్స్

700 జర్నల్స్ మరియు 15,000,000 రీడర్లు ప్రతి జర్నల్ 25,000+ రీడర్లను పొందుతున్నారు

ఇండెక్స్ చేయబడింది
  • ఇండెక్స్ కోపర్నికస్
  • గూగుల్ స్కాలర్
  • J గేట్ తెరవండి
  • జెనామిక్స్ జర్నల్‌సీక్
  • ఉల్రిచ్ పీరియాడికల్స్ డైరెక్టరీ
  • RefSeek
  • హమ్దార్డ్ విశ్వవిద్యాలయం
  • EBSCO AZ
  • పబ్లోన్స్
ఈ పేజీని భాగస్వామ్యం చేయండి

నైరూప్య

FFT and Wavelet-Based Feature Extraction for Acoustic Audio Classification.

A.K.M Fazlul Haque

Speech is one of the vital signals of acoustic classification. Speech recognition is also significant and very well known of audio processing. Speech contains very important frequency information of human being. The features of Audio, especially speech signal may be extracted using FFT (Fast Fourier Transform) and Wavelet to detect the frequency information of the signal. But it is difficult to extract the changes of small variation of speech signal with time-varying morphological characteristics. So, it is needed to be extracted by signal processing method because there are not visible of graphical audio signal. In this paper, an improved wavelet method has been proposed to extract the precise detection of small abnormalities of both original and noise corrupted speech signal which are taken empirically by writing MATLAB program. The proposed wavelet method found to be more summarized over conventional FFT and Wavelet in finding the small abnormalities of audio signal.