ISSN: 2168-9717

ఆర్కిటెక్చరల్ ఇంజనీరింగ్ టెక్నాలజీ

అందరికి ప్రవేశం

మా గ్రూప్ ప్రతి సంవత్సరం USA, యూరప్ & ఆసియా అంతటా 3000+ గ్లోబల్ కాన్ఫరెన్స్ ఈవెంట్‌లను నిర్వహిస్తుంది మరియు 1000 కంటే ఎక్కువ సైంటిఫిక్ సొసైటీల మద్దతుతో 700+ ఓపెన్ యాక్సెస్ జర్నల్‌లను ప్రచురిస్తుంది , ఇందులో 50000 మంది ప్రముఖ వ్యక్తులు, ప్రఖ్యాత శాస్త్రవేత్తలు ఎడిటోరియల్ బోర్డ్ సభ్యులుగా ఉన్నారు.

ఎక్కువ మంది పాఠకులు మరియు అనులేఖనాలను పొందే ఓపెన్ యాక్సెస్ జర్నల్స్

700 జర్నల్స్ మరియు 15,000,000 రీడర్లు ప్రతి జర్నల్ 25,000+ రీడర్లను పొందుతున్నారు

ఇండెక్స్ చేయబడింది
  • ఇండెక్స్ కోపర్నికస్
  • గూగుల్ స్కాలర్
  • షెర్పా రోమియో
  • J గేట్ తెరవండి
  • జెనామిక్స్ జర్నల్‌సీక్
  • అకడమిక్ కీలు
  • ఎలక్ట్రానిక్ జర్నల్స్ లైబ్రరీ
  • RefSeek
  • హమ్దార్డ్ విశ్వవిద్యాలయం
  • EBSCO AZ
  • OCLC- వరల్డ్ క్యాట్
  • SWB ఆన్‌లైన్ కేటలాగ్
  • వర్చువల్ లైబ్రరీ ఆఫ్ బయాలజీ (విఫాబియో)
  • పబ్లోన్స్
  • యూరో పబ్
ఈ పేజీని భాగస్వామ్యం చేయండి

నైరూప్య

Classification of Industrial Processes from Engineering Drawings Using Graph Neural Networks

Zivko Nikolov

While ample scanned engineering drawings area unit received each year, the net quotation corporations for custom mechanical components have knowledgeable about a billowing got to increase their process potency by substitution the presently manual examination method with associate degree automatic system. Previous work has used ancient, and data-driven computer-vision approaches to observe symbols and text info from the drawings.However, there lacks a unified framework to work out the associated producing processes as a crucial step for realizing associate degree automatic quoting system. During this paper, we tend to propose a process framework to mechanically verify the producing methodology acceptable to provide every queried engineering drawing, like lathing, flat solid bending, and edge. We tend to gift a data-driven framework that directly processes the formation pictures with a series of pre-processing steps and accurately determines the corresponding producing strategies for the queried spare a graph neural network. We tend to propose a completely unique line tracing algorithmic rule to rework advanced geometries in engineering drawings into vectorized line segments with bottom info loss.

నిరాకరణ: ఈ సారాంశం ఆర్టిఫిషియల్ ఇంటెలిజెన్స్ టూల్స్ ఉపయోగించి అనువదించబడింది మరియు ఇంకా సమీక్షించబడలేదు లేదా నిర్ధారించబడలేదు.