మా గ్రూప్ ప్రతి సంవత్సరం USA, యూరప్ & ఆసియా అంతటా 3000+ గ్లోబల్ కాన్ఫరెన్స్ ఈవెంట్లను నిర్వహిస్తుంది మరియు 1000 కంటే ఎక్కువ సైంటిఫిక్ సొసైటీల మద్దతుతో 700+ ఓపెన్ యాక్సెస్ జర్నల్లను ప్రచురిస్తుంది , ఇందులో 50000 మంది ప్రముఖ వ్యక్తులు, ప్రఖ్యాత శాస్త్రవేత్తలు ఎడిటోరియల్ బోర్డ్ సభ్యులుగా ఉన్నారు.
ఎక్కువ మంది పాఠకులు మరియు అనులేఖనాలను పొందే ఓపెన్ యాక్సెస్ జర్నల్స్
700 జర్నల్స్ మరియు 15,000,000 రీడర్లు ప్రతి జర్నల్ 25,000+ రీడర్లను పొందుతున్నారు
Abdelmounaim Bellakaout*, Cherkaoui Omari Mohammed, Ettarid Mohamed, Touzani Abderrahmane
Topographical technology by Airborne LIDAR (Light Detection and Ranging) generates a precise points cloud with a density of several points per square meter, LIDAR data processing is a crucial step to be used. Extraction of 3D information in automatic way and especially in urban areas from LIDAR data is one of the most difficult problems in computer vision; it is also a necessary step for implementation of several applications that require a high level interpretation of LASER data. Therefore, there is recently an increased interest in this research field and a vast literature. The problematic discussed in this article lies in the differentiation between the sets of points that represent a specified layer of information (construction, vegetation, roads, lines, etc.). This step is called segmentation. The aim of this study is to provide a set of automatic segmentation techniques tailored to different types of 3D data and proposes a methodology to classify LIDAR data with a maximum degree of automaticity using only point cloud data.